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RE-ENTERING OF BODIES WITH A POSITIVE

LIFT-TO-DRAG RATIO INTO THE EARTH’S ATMOSPHERE

UDC 519.86:533.6.011A. I. Borodin

The problem of gliding descent of a smooth blunted body with a positive lift-to-drag ratio in the Earth’s
atmosphere is solved within the framework of the parabolized viscous shock layer model.

Introduction. When objects move in the atmosphere with high supersonic velocities, gas heating in the
shock layer in a close vicinity of the body initiates various physicochemical processes, which should be taken into
account to obtain a realistic physical flow pattern. In the present paper, numerical simulation of a supersonic,
chemically nonequilibrium multispecies viscous gas flow is performed within the framework of the “parabolized”
viscous shock layer model, which is a modification of the full viscous shock layer equations [1] and which was proposed
initially for uniform gas flows [2, 3] and then for a multispecies mixture of gases [4]. Parabolized viscous shock layer
equations, which are simplified full Navier–Stokes equations and contain all terms of boundary-layer equations and
inviscid shock-layer equations in the hypersonic approximation, describe the entire disturbed region between the
shock wave (its position is unknown a priori) and the body surface. The choice of this model is explained, first,
by the fact that it is fairly accurate for smooth bodies within a rather wide vicinity of body bluntness, which is of
practical interest and where the force and thermal loads are rather significant, and the shock layer itself remains
thin [5]. Second, to solve the corresponding boundary-value problem within the framework of this model, one can
use fast and economic marching methods, which is particularly important for three-dimensional flows. Finally,
third, among all known modifications of the viscous shock layer equations, which retain the parabolic type, the
parabolized viscous shock layer model allows a significant extension of the computational domain size in terms of
the marching coordinate.

Formulation of the Problem. We consider the problem of a hypersonic flow of a chemically nonequilibrium
mixture of gases around blunted bodies with a catalytic surface at angles of attack and sideslip. To solve the problem
numerically, we introduce a curvilinear coordinate system xi, which is normally attached to the body surface: the x3

axis is directed along the normal to the body and the x1 and x2 axes are located on the body surface. The equations
of the spatial “parabolized” viscous shock layer describe the flow between the body surface and the detached shock
wave. Taking into account nonequilibrium chemical reactions and multispecies diffusion and ignoring thermal
diffusion, diffusion thermal effect, and pressure diffusion, these equations in an arbitrary curvilinear coordinate
system in dimensionless variables has the following form [4]:
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Here Di ≡ ∂/∂xi, D∗ ≡ (uα/√g(αα))Dα, D ≡ D∗ + u3D3, Re = ρ∞V∞L/µ(T0), and T0 = 104 K.
System (1)–(9) is closed by the Stefan–Maxwell relations
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Here V∞ui are the physical components of the velocity vector along the corresponding coordinate axes, ρ∞V 2
∞P ,

ρ∞ρ, and T0T are, respectively, the pressure, density, and temperature of the gas mixture consisting of N chemical
components, µ(T0)µ is the viscosity, (V 2

∞/(2T0))cp is the specific heat capacity, σ is the Prandtl number, ci, mi,
0.5V 2

∞hi, (V∞/(2T0))cpi, V∞ρ∞Ii, and V∞ρ∞ẇi/L are, respectively, the mass concentration, molecular weight,
specific enthalpy, specific heat capacity, normal component of the diffuse flux vector, and the rate of formation of
mass of the ith component as a result of chemical reactions, c∗i and I∗i are, respectively, the concentration and
normal component of the diffuse flux vector of the ith chemical element (i = 1, 2, . . . , Ne, where Ne is the number of
elements), Dij are the binary coefficients of diffusion, Scij are Schmidt numbers, RG = V 2

∞R/T0 is the universal gas
constant, gαβ and gαβ are, respectively, the covariant and contravariant components of the first quadratic form of
the body surface (g = g11g22−g2

12), and Akβδ are the known functions of the body shape [6]. Summation is performed
over repeated indices, which are not enclosed in brackets. The Latin sub- and superscripts take the values 1, 2, or
3 (except for specially marked cases); the Greek sub- and superscripts are equal to 1 or 2. All linear dimensions
are normalized to the characteristic linear size L. Hereinafter, the subscripts w, ∞, and s refer to quantities on the
body surface, in the free stream, and behind the shock wave, respectively.

Boundary conditions on the shock wave and on the body surface are set for the differential equations (1)–(7).
Generalized Rankine–Hugoniot equations in the hypersonic approximation with ignored chemical reactions inside
the shock wave are used on the shock wave:
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u3
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(10)
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∞Re

D3T =
N∑
i=1

ci∞(hi − hi∞)− (u3
∞)2 −Bαβ(uα − uα∞)(uβ − uβ∞).

The boundary conditions on the body surface, taking into account heterogeneous chemical reactions and ignoring
heat removal inside the body, have the following form:
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(11)

Here εB is the emissivity of the surface, σB is the Stefan–Boltzmann constant, and ρ∞V∞ṙi is the rate of formation
of the ith component due to heterogeneous reactions.

The dissociating air in the shock layer is represented as an ideal gas consisting of five chemical components:
O2, N2, NO, O, and N, in which there proceed three dissociation-recombination reactions

O2 + M ⇐⇒ 2O + M,

N2 + M ⇐⇒ 2N + M,

NO + M ⇐⇒ N + O + M

and three exchange reactions

N2 + O2 ⇐⇒ 2NO,

NO + O ⇐⇒ N + O2,

NO + N ⇐⇒ O + N2

(M is a third element, which may be anyone of the five components).
The dependences of the rate constants of direct and reverse reactions on temperature were determined in

accordance with [7]. The transfer coefficients and thermodynamic functions were calculated by the formulas given
in [8–12].

The atmosphere is assumed to be isothermal with the density distribution ρ∞ [g/cm3] over the altitude
H [km]: ρ∞ = 1.225 · 10−3 exp (−0.142H). It is assumed that heterogeneous catalytic reactions are first-order
reactions ṙi = −ρkwici (i ≡ O, N, NO), where V∞kwi is the rate constant of heterogeneous recombination. We
consider two models of catalytic interaction of the gas and the solid surface. Model 1: kwi = 0 (neutral surface);
model 2: kwi =∞ (perfectly catalytic surface).

Method of Solution. We choose a polar coordinate system on the body surface; the origin is at the
stagnation point [13]. At this point, the normal to the body surface coincides with the free-stream direction, which
is determined by the angles of attack α and sideslip β. One family of coordinate lines consists of concentric “circles,”
and the other is a bunch of “beams” with the center in the origin.

Taking into account the special features of the chosen coordinate system on the surface, we pass to the new
variables
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,

Xi = Ii/∆, i = 1, . . . , N −Ne, X∗i = I∗i /∆, i = 1, . . . , Ne.

As a result, it becomes possible to resolve the singularities in the stagnation point.
In the new variables, the continuity equation (1) is identically satisfied; the whole system of differential

equations (2)–(9) with the boundary conditions (10) and (11) in these variables is given in [4].
The Stefan–Maxwell equations are written in the form [14]

Xi = αi
∂ci
∂ζ

+ βici, i = 1, . . . , N − 1. (12)
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To determine the flux Xi, we integrate the corresponding continuity equation for the ith component; to calculate the
concentration of this component ci, we use this equation with the substitution of Xi from Eq. (12). This approach
allows finding the unknown concentrations of gases of the mixture without prior resolution of the Stefan–Maxwell
relations relative to diffuse fluxes.

Thus, the resultant system, which described the mixture flow in the shock layer, contains two third-order
equations for the transverse coordinate ζ relative to the stream functions fα, a second-order equation for the
temperature θ, a second-order equation for the coordinate x3 (which is a corollary of the momentum equation in
projection onto the normal to the body surface, the continuity equation, and the equation of state), two first-order
equations for the longitudinal components of the pressure gradient Pα, N − 1 first-order equations for diffuse fluxes
Xi, and N − 1 second-order equations for the concentrations ci.

The normal component of the velocity vector u3 and the density ρ are determined by the formulas

u3 = −A ∂x3

∂ζ
+ (ξ1)2−α ∂fα

∂ζ

∂x3

∂ξα
, ρ =

∆ξ1

√
g

(
∂x3

∂ζ

)−1

.

For numerical integration of the second- and third-order differential equations relative to the transverse
coordinate ζ, we used an implicit finite-difference scheme with an order of approximation O(δξ1)+O(δξ2)2 +O(δζ)4,
which is an extension of the scheme of [15] to a three-dimensional case and employs a variable step along the
coordinate ζ. In the convective operator, the derivatives with respect to the marching coordinate ξ1 are replaced
by upstream differences, and the derivatives with respect to the circular coordinate ξ2 are approximated by central
differences on the basis of the solution obtained at the previous iteration on the current “circle” ξ1 + δξ1 = const.

The first-order equations are integrated by Simpson’s method with a fourth-order accuracy in terms of ζ.
The value of ∆(ξ1, ξ2) is determined after completing the calculation of the whole “circle” at each iteration

by the method of cylindrical sweeping [16]; thus, it is a linking function for solutions obtained at all computational
points of the current “circle.”

Since the coordinate system introduced on the body surface (ξ1, ξ2) degenerates in the stagnation point,
we used a nondegenerate curvilinear coordinate system to solve the initial equations at this point. The resultant
solution was recalculated to the coordinate system (ξ1, ξ2, ζ) using the algebraic formulas of [13] and was assumed
to be the initial solution for the entire computational domain.

The special feature of the method proposed is that its implementation does not require planes of symmetry
in the flow (therefore, it is possible to perform calculations for the general case of the flow around bodies at angles
of attack and sideslip), and numerical differentiation of velocity and temperature profiles across the shock layer is
not needed in calculating the friction and heat-transfer coefficients on the body surface.

The calculations show that this method is stable and economical and allows one to obtain a solution of the
system of parabolized viscous shock layer equations within a wide range of the governing parameters of the problem.

Results. The re-entry body was assumed to be an elliptic paraboloid, whose equation in the Cartesian
coordinate system has the form 2z = (x/b)2 + (y/c)2, where b = 1 and c = 1.5811. The ratio of the major
curvatures at the apex of this paraboloid is k = 0.4. The characteristic linear scale in the problem was chosen as
the least radius of the major curvatures at this point L = 0.5 m. The emissivity of the surface was εB = 0.85.

To verify the reliability of the results given below, we solved the problem of the flow around this paraboloid
under conditions of its motion along the re-entry trajectory to the Earth’s atmosphere; the paraboloid centerline co-
incides with the free-stream direction. The values of the temperature of the heat-insulated surface at the paraboloid
apex, which were obtained in the present work, coincide with the data of [17] for both models of heterogeneous
catalytic reactions.

The trajectory considered in the present paper (Table 1) was borrowed from [18]. The computational domain
is a space enclosed between the shock-wave and paraboloid surfaces and the surface formed by the normals to the
paraboloid cross section by the plane z = 0.8. This plane was chosen so that the stagnation point was inside the
computational domain along the whole trajectory (i.e., for given α and β). Thus, the computation of the flow of a
multispecies mixture near the surface of the elliptical paraboloid in the chosen curvilinear coordinate system starts
from the stagnation point with the coordinate ξ1 = 0 and is terminated in a given cross section, which coincides
with the coordinate line ξ1 = 1.

Figure 1 shows the calculation results for the surface temperature at the stagnation point for the paraboloid
moving along the trajectory for different cases of proceeding of heterogeneous catalytic reactions (curves 1 correspond
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TABLE 1

H, km t, sec V , m/sec α, deg β, deg

122.0 0 7810 34 30

99.7 190 7840 34 24

76.1 430 7680 34 70

65.3 900 6240 32 53

48.4 1470 2724 30 10

46.8 1525 2440 30 17

27.4 1790 985 15 29

21.8 1905 463 10 −10

21.4 1909 454 10 −10

Fig. 1

TABLE 2

H, km t, sec
Tcr, K Tmax, K Ta, K

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

98.6 200 1215 1250 1228 1257 1170 1188
78.3 400 1385 1720 1417 1743 1369 1646
68.7 600 1477 1927 1509 1959 1464 1880
67.9 640 1483 1931 1516 1964 1468 1884
66.3 800 1474 1876 1500 1903 1430 1800
63.3 1000 1456 1755 1477 1770 1421 1691
57.0 1200 1372 1587 1385 1599 1347 1537
50.3 1400 1265 1314 1280 1324 1250 1280

to a perfectly catalytic surface and curves 2 refer to a neutral surface). We considered the trajectory descent of the
body with taking into account its lift-to-drag ratio (solid curves) and ignoring the latter (α = β = 0) (dashed curves).
In the latter case, the stagnation point coincides with the paraboloid apex. For realistic values of the angles of
attack and sideslip, the temperature at the stagnation point is lower; the maximum decrease in temperature reaches
100–110 K, depending on the model of heterogeneous catalytic reactions. Since the stagnation point is not the
point of the maximum surface temperature for nonzero angles of attack (in contrast to the case α = 0), it cannot
be considered as the characteristic point in this aspect.

Table 2 gives the temperature at the stagnation point Tcr, in the most heat-loaded point of the surface
Tmax, and at the paraboloid apex Ta at some points of the trajectory for a neutral surface (model 1) and a perfectly
catalytic surface (model 2). In both numerical models, the maximum of characteristic temperatures is reached at an
altitude of approximately 68 km. (The greatest temperature at the nose tip of the fuselage, which is approximately
equal to 1920 K, is given in [18].)

For design purposes, of interest is the mean-integral heat flux over the surface, which is calculated by the
formula

qS =
1
S

∫
q dS =

2π∫
0

1∫
0

q(ξ1, ξ2)
√
g(ξ1, ξ2) dξ1 dξ2

( 2π∫
0

1∫
0

√
g(ξ1, ξ2) dξ1 dξ2

)−1

,

where S is the body-surface area.
Figure 2 shows the heat flux at the stagnation point qcr (curves 1) and points qS (curves 2) as a function

of flight time for a perfectly catalytic (solid curves) and neutral (dashed curves) surfaces. The points in Fig. 2
indicate the values q = Kqcr, where K = 0.527 for a perfectly catalytic surface and 0.556 for a neutral surface. The
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Fig. 2 Fig. 3

difference between this linear dependence of q and the distribution of qS is less than 4%. The reason is that the
heat flux to the body surface, normalized to its value at the stagnation point, depends weakly on the governing
parameters of the problem for trajectory motion, as was noted in [2–5, 13]. It is seen in Fig. 2 that the positions of
the maximum coincide for all distributions (H ≈ 68 km).

Figure 3 gives an idea of the character of heating of the surface and location of heat-loaded regions on the
latter. Figure 3 shows the projections of temperature isolines of a perfectly catalytic surface of the paraboloid onto
the plane of Cartesian coordinates (x, y) for t = 800 sec. The diverging “beams” are coordinate lines ξ2 = const;
the center of this bunch is the stagnation point. There are only two coordinate lines ξ1 = const in Fig. 3: the
stagnation point (ξ1 = 0) and the boundary of the computational domain (ξ1 = 1). The paraboloid apex is in the
center of the ellipse. The temperature distribution along the body surface at an arbitrary time of descent along
the trajectory considered has a complex and significantly asymmetric character. The zone of elevated temperatures
moves together with the stagnation point, though the latter is not the point of the maximum of these distributions.
The point of the maximum is shifted toward the maximum mean curvature of the body surface.
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